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Abstract—Energy storage (ES) is a pivotal technology for
dealing with the challenges caused by the integration of renewable
energy sources. It is expected that a decrease in the capital cost
of storage will eventually spur the deployment of large amounts
of ES. These devices will provide transmission services, such
as spatiotemporal energy arbitrage, i.e., storing surplus energy
from intermittent renewable sources for later use by loads while
reducing the congestion in the transmission network.

This paper proposes a bilevel program that determines the
optimal location and size of storage devices to perform this
spatiotemporal energy arbitrage. This method aims to simul-
taneously reduce the system-wide operating cost and the cost of
investments in ES while ensuring that merchant storage devices
collect sufficient profits to fully recover their investment cost.
The usefulness of the proposed method is illustrated using a
representative case study of the ISO New England system with
a prospective wind generation portfolio.

Index Terms—Bilevel optimization, distributed energy storage,
energy storage investment, energy storage profitability, power
system economics, power system planning, storage siting, storage
sizing, wind power generation.

NOMENCLATURE

A. Sets and Indices

B Set of buses, indexed by b.
E Set of representative days, indexed by e.
I , Ib Set of conventional generators and subset of

conventional generators connected to bus b,
indexed by i.

J Set of ES blocks, indexed by j.
L Set of transmission lines, indexed by l.
T Set of time intervals, indexed by t.
ΞUL Set of upper-level (UL) decision variables.
ΞPLL/DLL Set of primal/dual lower-level (PLL/DLL)

decision variables.
k Auxiliary index of time intervals.
o(l), r(l) Indices of the sending and receiving buses of

transmission line l.
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B. Continuous Variables

a1
e,t,b,j , a

2,ch/dis
e,t,b,j Auxiliary variables used for linearization.

che,t,b, dise,t,b ES charging and discharging rate at bus b
during time interval t on representative day
e, MW.

eSoCe,t,b State-of-charge of ES at bus b at the end of
time interval t on representative day e, MWh.

eSoCmax
b Maximum state-of-charge of the ES at bus b,

MWh.
fe,t,l Power flow in transmission line l during time

interval t on representative day e, MW.
ge,t,i Output of conventional generator i during

time interval t on representative day e, MW.
he,t,i, he,t,i Auxiliary variables used for linearization.
IC Investment cost, $.
OCPLL/DLL

e Objective function of the PLL/DLL problem
on representative day e, $.

pmax
b Maximum power rating of ES at bus b, MW.
wse,t,b Wind spillage at bus b during time interval t

on representative day e, MW.
θe,t,b Voltage phase angle at bus b during time

interval t on representative day e, rad.

C. Dual Continuous Variables

Dual variables associated with the PLL problem constraints:

αe,t,i, αe,t,i Min/max power output of conventional gen-
erators, eq. (11).

β
RD/RU
e,t,i Ramp down/up limit of conventional genera-

tors, eq. (12).
ξe,t,l Power flow, eq. (13).
δe,t,l, δe,t,l Power flow limits, eq. (14).
εe,t,b State-of-charge of ES, eq. (15).
ϕch/dis
e,t,b , ϕch/dis

e,t,b
Charging/discharging limits of ES, eq. (16)–
(17).

ϕeSoC
e,t,b, ϕeSoC

e,t,b
State-of-charge limits of ES, eq. (18).

λe,t,b Nodal power balance, eq. (19).
γe,t,b Upper bound on the wind spillage, eq. (20).

D. Binary Variables

ub,j Binary variable corresponding to the place-
ment decision of ES block j at bus b.

ve,t,i On/off status of conventional generator i dur-
ing time interval t on representative day e.

ye,t,i, ze,t,i Start-up and shutdown status of conventional
generator i during time interval t on repre-
sentative day e.
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E. Parameters

ceSoC, cp Capital cost of ES per MWh ($/MWh) and
per MW ($/MW).

cg
i Incremental cost of conventional generator i,

$/MWh.
cnlc
i No-load cost of conventional generator i, $.
cstart
i Start-up cost of conventional generator i, $.
de,t,b Demand at bus b during time interval t on

representative day e, MW.
DTi, UTi Minimum down- and up-time of conventional

generator i, h.
F l Maximum power flow in transmission line l,

MW.
Gi, Gi Maximum and minimum power output of

conventional generator i, MW.
G0

e,i Initial power output of conventional generator
i on representative day e, MW.

ICmax Investment budget, $.
Le,i, Le,i Number of hours that conventional generator

i must remain on/off at the beginning of
representative day e. Note that if Li,e 6= 0,
then Li,e = 0, and vice versa.

M Sufficiently large positive number.
nB Number of buses.
nE Number of representative days.
nI Number of conventional generators.
nJ Number of ES blocks.
nL Number of transmission lines.
nT Number of time intervals.
RUi,RDi Ramp up and down of conventional generator

i, MW/h.
umax
b Maximum number of ES blocks that can be

installed at bus b.
V oWS Value of wind spillage, $/MWh.
V 0
e,i Initial commitment of conventional generator

i on representative day e.
wf

e,t,b Wind power forecast at bus b during time
interval t on representative day e, MW.

xl Reactance of transmission line l.
λ̄e,t,b Locational marginal price (LMP) from the

no-ES case, $/MWh.
ωe Weight of representative day e.
ρ Energy-to-power ratio of ES, h.
χ Parameter relating the investment cost of ES

and their expected profit.
∆eSoC Energy rating of the single ES block, MWh.
∆λ Parameter modeling the deviation of the LMP

from the no-ES case.
∆τ Duration of time interval t, h.
ℵch/dis Charging/discharging efficiency of ES.

I. INTRODUCTION

Recent advances in material science make the large-scale
deployment of electrochemical energy storage (ES) in the
transmission system a technically feasible option [1]. Ap-
plications such as spatiotemporal energy arbitrage [2], peak
shaving [3], frequency [4] and voltage [5] support, as well

as congestion management [2], [6] have been proposed. Pro-
vided anticipated capital cost reductions and increased charg-
ing/discharging efficiencies are achieved, system operators
(SOs) could use grid-scale electrochemical ES distributed in
the transmission network to facilitate the reliable integration of
uncertain and variable renewable generation [7]. For instance,
Solomon et al. [8] estimate that the state of California will
need 186 GWh/22 GW of ES to enable an approximately 85%
penetration of renewable generation. However, the authors
intentionally avoid discussing the economic implications of
such large-scale ES deployment due to the uncertainty of
the capital costs. Kintner-Meyer et al. [9] conclude that the
Northwest Power Pool will need up to 10 GWh/1 GW of ES
resources by 2019 to be able to balance 14.4 GW of installed
wind generation capacity. However, the economic analysis in
[9] also reveals that revenue streams for such a deployment of
ES are expected to be thin.

Regulators and SOs acknowledge that although the deploy-
ment of ES can reduce the cost of operating the grid, for-profit
owners of ES should collect sufficient profit to justify their
investments [10], [11]. For instance, the CAISO roadmap for
ES prioritizes the challenge of ‘realize(-ing) the full revenue
opportunities consistent with the value ES can provide’ [10].
In line with [10] and FERC Order No. 792 [11], this paper
shows how both the system-wide cost savings and the profits
collected by ES owners can be accounted for while jointly
optimizing ES siting and sizing decisions for spatiotemporal
arbitrage. This joint optimization is necessary because, unlike
pumped-hydro plants that can only be installed in a limited
number of locations, electrochemical ES can be distributed
more widely in the transmission network [2], [8], [10].

The complexity of joint siting and sizing of ES arises from
the need to balance long- and short-term costs and benefits
[2], as well as from the difficulties associated with taking
transmission constraints into account [12]. In [13], the value
of ES siting and sizing is itemized for different storage tech-
nologies and grid services. Based on their numerical studies,
the authors of [13] conclude that ignoring levelizing short- and
long-term benefits of ES and tranmission constraints leads to
an inaccurate assessment of the value of ES. To overcome this
complexity, Dvijotham et al. [14] and Pandžić et al. [2] use
sampling-based approaches, which site and size ES providing
spatiotemporal energy arbitrage for each day of the year
separately. To aggregate the daily decisions in the preferable
ES locations and sizes, Dvijotham et al. [14] analyze the daily
frequency of the siting and sizing using a heuristic greedy
algorithm. Similarly, Pandžić et al. [2] select the preferred
locations of ES based on their daily frequency over the course
of the year and compute the optimal size of ES at every
bus as the average of the daily sizing decisions. Makarov
et al. [4] limit the application of ES to providing balancing
services and aggregate the Western Electricity Coordinating
Council system to a one-bus model. In [4], the ES ratings
for various timescales are computed by performing a Discrete
Fourier Transform on the balancing power profile. Unlike [2],
[13], [14], the approach in [4] does not consider economic
factors and, thus, calculates the maximum physical limit of
ES deployment that could be theoretically installed.
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The common thread of [2], [4], [9], [13], [14] is that ES is
installed solely to minimize the system-wide operating cost.
However, in practice ES is likely to be owned by independent
entities that aim to maximize their profits [15]. These ES
devices are therefore likely to be scheduled differently from
those in [2], [4], [13], [14], thus affecting the cost savings
that the SO might achieve from their deployment. Wogrin et
al. [12] and Castillo et al. [16] co-optimize the system-wide
operating cost and the operating cost of ES. As shown in
[16], minimizing the system-wide operating cost in a convex
economic dispatch formulation also yields the maximum profit
for ES owners in a perfectly competitive market. However,
binary commitment decisions on conventional generators and
their minimum up and down time constraints are neglected in
[16]. This approach may therefore yield inaccurate ES siting
and sizing decisions. Finally, the models in [12], [16] do not
guarantee that the maximized ES profit will be sufficient to
fully recover the investments made by ES owners.

This paper proposes a computationally tractable bilevel
program (BP) to optimize ES siting and sizing decisions in
a meshed transmission network considering the perspective of
both the SO and ES owners. The main contributions are as
follows:

1) As in [2], [12]–[14], [16], the proposed BP jointly sites
and sizes ES used for spatiotemporal energy arbitrage
to minimize the system-wide operating cost and the ES
investment cost. Unlike in [2], [12]–[14], [16], the pro-
posed BP explicitly accounts for the ES profit collected
from the electricity market. Finally, unlike in [12], [16],
it also accommodates the binary nature of commitment
decisions on conventional generators.

2) Additionally, the bilevel structure of the model makes it
possible to compute endogenously locational marginal
prices (LMPs), which can be used to relate explicitly the
investment cost of ES and their expected profit as well
as to study the ability of ES to influence LMPs. Thus,
the proposed BP accounts for the mutual dependency
between investment decisions on ES and LMPs. The
relationship between the investment cost and expected
profit is then enforced by a minimum expected profit
constraint ensuring that the ES profits are sufficient to
recover the investment costs.

3) The resulting profit-constrained BP gives rise to a non-
linear problem since the ES profit is formulated as a
nonlinear expression. This work presents a duality-based
approach to equivalently transform the proposed BP into
a nonlinear equivalent and a novel linearization scheme
that makes it possible to reformulate it as an equivalent
mixed-integer linear programing (MILP) problem.

4) The proposed approach is applied to a test-bed of the
ISO New England system [17] with off-the-shelf soft-
ware. The case study analyzes the impact of the profit
constraint on the ES siting and sizing decisions, the
SO operating cost and savings, and the ES profits. The
sensitivity of these decisions is analyzed for different
investment budgets, operating strategies, and ES capital
cost scenarios. The numerical results presented in this

Lower-level problems (10)–(20)
(Operational decisions for

representative days)

Upper-level problem (1)–(9)
(ES siting and sizing decisions)

ch, dis, g, ws, λv, y, pmax, eSoCmax

Fig. 1. An illustration of the proposed bilevel program and the
interfaces between the upper- and lower-level problems. For the sake
of clarity the indices of the decision variables have been omitted.

paper demonstrate the usefulness of this approach for
regulators and SOs in assessing the economic viability
of the ES deployment by balancing the SO cost savings
and ES owner profits.

The remainder of this paper is organized as follows. In
Section II the proposed BP is formulated. In this BP, typical
scheduling and dispatch constraints on conventional and wind
generators are combined with new investment and expected
profit constraints on merchant ES. Section III describes the
duality-based solution technique [18]. Section IV presents the
experimental setup and compares different siting and sizing
decisions obtained with the proposed BP in terms of the SO
operating cost and savings as well as ES investments and
profits. Section V presents the conclusions and outlines the
needs for further research.

II. PROBLEM FORMULATION

The proposed BP consists of an upper-level (UL) and
a lower-level (LL) problem, as shown in Fig. 1. The UL
problem minimizes the expected system-wide operating cost
over all representative days and the investment cost of the
profit-constrained ES siting and sizing decisions. A separate
LL problem is formulated for each representative day to
compute the least-cost system-wide operating cost subject to
the operational constraints and conditions for that day. As
explained in [18], this BP can be solved using the duality-
based solution technique that requires the convexity of the LL
problems. Therefore, as in [19]–[21], the constraints on binary
decisions, e.g., the on/off statuses of conventional generators,
are enforced in the UL problem and the corresponding binary
decisions parametrize the LL problems.

Fig. 1 shows that the ES ratings (pmax
b and eSoCmax

b ) and
binary decisions on generators (ve,t,i and ye,t,i) resulting from
the UL problem affect the decisions made in the LL problems.
Similarly, the dispatch decisions (ge,t,i and wse,t,b) and the ES
charging/discharging decisions (che,t,b and dise,t,b) resulting
from the LL problems affect the decisions made in the UL
problem. The LL problems yield LMPs (λe,t,b), which, in turn,
are used in the UL problem to compute the profit collected by
the ES owners.
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A. Upper-Level Problem

The UL objective function is:

min
ΞUL

∑
e∈E

(
ωe ·OCPLL

e

)
+ IC, (1)

where OCPLL
e is the system-wide operating cost as defined

in (10) and ΞUL = {IC, pmax
b , SoCmax

b , ve,t,i, ye,t,i, ze,t,i} are
the UL decision variables. The first term in (1) represents the
operating cost over all representative days, OCPLL

e , calculated
using the weighing factor ωe of each representative day e.
The second term in (1) represents the investment cost resulting
from the ES siting and sizing decisions. The UL constraints
are as follows:

1) Investment constraints: To balance modeling accuracy
and computational complexity, the investment model is as-
sumed to be static, i.e., all investment decisions are optimized
for operations during a given target year in the future [22].
Thus, the investment cost is computed as in [2] using the ES
ratings (pmax

b and eSoCmax
b ) and daily prorated per MWh and

MW capital costs (ceSoC and cp):

IC =
∑
b∈B

(
ceSoC · eSoCmax

b + cp · pmax
b

)
, (2)

IC ≤ ICmax, (3)

where parameters ceSoC and cp are calculated based on the
net present value approach and assuming no depreciation
of installed ES. Note that depreciation can be factored in
parameters ceSoC and cp, as explained in [23], if decision-
makers have a reasonable estimate of the residual worth of
installed ES. In addition, constraint (3) imposes the budget
limit on the total investment cost.

2) Profit constraint: ES owners pay or get paid the LMP
(λe,t,b) when they charge or discharge their units. Therefore,
the expected profit of an ES owner over the representative days
is related to the investment cost by the following constraint:∑

e∈E
ωe ·

∑
b∈B

∑
t∈T

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch)

≥ χ · IC. (4)

In (4), parameter χ can be viewed as a rate of return that
the ES owner anticipates to receive from investment IC [24].
This parameter can be set by investors according to their
profitability preferences. If χ ≥ 1, the expected profit in
the left-hand side of (4) is sufficient for the investor to fully
recover the investment cost, including energy losses due to
ℵdis/ch < 1. Therefore, (4) precludes siting and sizing decisions
that would result in insufficient profit opportunities1, which is
a significant improvement over the techniques described in [2],
[12]–[14], [16].

Mathematically, λe,t,b in (4) is a LL dual variable asso-
ciated with constraint (19) and, therefore, the left-hand side
of (4) contains two nonlinear products of the LL dual and

1Since constraint (4) computes the expected profit over all representative
days, it does not guarantee nonnegative profits at every representative day in-
dividually. However, such guarantees could be enforced if constraint (4) were
modified as follows:

∑
b∈B

∑
t∈T λe,t,b ·

(
dise,t,b · ℵdis − che,t,b/ℵch

)
≥

0, ∀e ∈ E.

primal decision variables (λe,t,b · dise,t,b and λe,t,b · che,t,b).
Appendix A-1 presents a novel linearization scheme, which
reformulates (4) as an equivalent linear constraint.

3) Binary constraints on generators (∀e ∈ E, i ∈ I):
ye,t,i − ze,t,i = ve,t,i − ve,t−1,i, ∀t ∈ T, (5)

ye,t,i + ze,t,i ≤ 1, ∀t ∈ T, (6)

ve,t,i = V 0
e,i, ∀t ≤ Le,i + Le,i, (7)

t∑
k=t−UTi+1

ye,k,i ≤ ve,t,i, ∀t ∈
[
Le,i, nT

]
, (8)

t∑
k=t−DTi+1

ze,k,i ≤ 1− ve,t,i, ∀t ∈
[
Le,i, nT

]
. (9)

Constraints (5)–(6) implement the binary logic for on/off sta-
tus, start-up, and shutdown decisions. Constraint (7) accounts
for the on/off statuses at the beginning of each day. Constraints
(8)–(9) enforce the minimum up and down times.

B. Primal Lower-Level Problem

The objective function of the primal LL (PLL) problem for
each representative day e is:

min
ΞPLL

OCPLL
e :=

∑
t∈T

∑
i∈I

cg
i · ge,t,i +

∑
t∈T

∑
b∈B

V oWS · wse,t,b

+
∑
t∈T

∑
i∈I

(
cstart
i · ye,t,i + cnlc

i · ve,t,i
)
, (10)

where ΞPLL =
{
che,t,b, dise,t,b, eSoCe,t,b, fe,t,l, ge,t,i, wse,t,b,

θe,t,b
}

are the PLL decision variables. The first two terms in
(10) account for the incremental cost of generation and the cost
of wind spillage. The last term represents the start-up and no-
load cost associated with the binary decisions ye,t,i and ve,t,i,
which are optimized in the UL problem. The PLL constraints
are defined as follows (dual variables for each constraint are
given in parantheses after a colon):

1) Dispatch constraints (∀t ∈ T, i ∈ I): The power output
of generators is limited by their minimum and maximum limits
(11) and inter-hour ramp rates (12):

Gi · ve,t,i ≤ ge,t,i ≤ Gi · ve,t,i : (αe,t,i, αe,t,i), (11)

−RDi ≤ ge,t,i − ge,t−1,i ≤ RUi : (βRD
e,t,i, β

RU
e,t,i). (12)

2) DC network constraints (∀t ∈ T, l ∈ L): Since this
paper considers storage siting and sizing in transmission
networks, a meshed topology is assumed. The power flow of
each transmission line is calculated in (13) and the power flow
limits are enforced in (14):

fe,t,l =
θe,t,o(l) − θe,t,r(l)

xl
: (ξe,t,l), (13)

−F l ≤ fe,t,l ≤ F l : (δe,t,l, δe,t,l). (14)
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3) ES constraints (∀t ∈ T, b ∈ B): Constraint (15) com-
putes the ES state-of-charge and constraints (16)–(18) enforce
the maximum ES power and energy limits:

eSoCe,t,b = eSoCe,t−1,b + che,t,b ·∆τ − dise,t,b ·∆τ : (εe,t,b),
(15)

0 ≤ che,t,b ≤ pmax
b : (ϕch

e,t,b
, ϕch

e,t,b), (16)

0 ≤ dise,t,b ≤ pmax
b : (ϕdis

e,t,b
, ϕdis

e,t,b), (17)

0 ≤ eSoCe,t,b ≤ eSoCmax
b : (ϕeSoC

e,t,b
, ϕeSoC

e,t,b). (18)

In (16)–(18), decisions on ES ratings pmax
b and eSoCmax

b are
optimized in the UL problem. As in [2], the lower bound in
(18) assumes that ES is placed with zero energy charged on
the top of its minimum state-of-charge requirement.

4) Nodal power balance (∀t ∈ T, b ∈ B): At each bus, the
power balance includes the injections from conventional and
wind generation, ES, and adjacent transmission lines:

∑
i∈Ib

ge,t,i −
∑

l|o(l)=b

fe,t,l +
∑

l|r(l)=b

fe,t,l +
(
wf

e,t,b − wse,t,b
)

−che,t,b/ℵch + dise,t,b · ℵdis = de,t,b : (λe,t,b), (19)

where the wind spillage is constrained by:

0 ≤ wse,t,b ≤ wf
e,t,b : (γe,t,b), (20)

The wind spillage in eq. (20) is involuntary and is not used
for providing active power reserve as explained in [25].

III. SOLUTION METHOD

The BP (1)–(20) can be recast as a single-level equivalent
using a duality-based technique which involves two steps [18],
[26]–[29]. First, the primal-dual transformation is applied to
the PLL problems due to the convexity of the LL problems
(Section III-A). Second, the PLL and the dual LL (DLL)
objective functions are equated to enforce the strong duality
theorem (Section III-B). The UL and LL decisions are thus
simultaneously optimized via the exchange of their decision
variables, as depicted in Fig. 1. The nonlinear single-level
equivalent of the BP is presented in Section III-C. This
nonlinear equivalent is then converted into the single-level
MILP problem described in Section III-D using the lineariza-
tion process shown in Appendix A. Finally, Section III-E
summarizes the computational complexity of the single-level
MILP problem.

A. Dual Lower-Level Problem

Given the dual variables shown after a colon in (11)–(20),
the DLL problem for each representative day e is written as
follows:

1) DLL objective function:
max
ΞDLL

OCDLL
e :=

∑
t∈T

∑
b∈B

[
γe,t,b · wf

e,t,b + eSoCmax
b · ϕeSoC

e,t,b

+pmax
b ·

(
ϕch
e,t,b + ϕdis

e,t,b

)
+ λe,t,b · (de,t,b − wf

e,t,b)
]

+
∑
t∈T

∑
i∈I

ve,t,i ·
(
αe,t,i ·Gi + αe,t,i ·Gi

)
(21)

+
∑
t∈T

∑
i∈I

(
βRU
e,t,i ·RUi − βRD

e,t,i ·RDi

)
+
∑
i∈I

(
βRU
e,1,i + βRD

e,1,i

)
·G0

e,i +
∑
t∈T

∑
l∈L

(
δe,t,l − δe,t,l

)
· F l,

where ΞDLL =
{
αe,t,i, β

RU
e,t,i, δe,t,l, γe,t,b, ϕ

eSoC
e,t,b, ϕ

ch
e,t,b, ϕ

dis
e,t,b ≤

0;αe,t,i, β
RD
e,t,i, δe,t,l, ϕ

eSoC
e,t,b

, ϕch
e,t,b

, ϕdis
e,t,b

≥ 0;λe,t,b, ξe,t,l,

εe,t,b
}

are the DLL decision variables.

2) DLL constraints:
δe,t,l + δe,t,l + ξe,t,l − λe,t,o(l) + λe,t,r(l) = 0,

∀t ∈ T, l ∈ L, (22)
γe,t,b − λe,t,b ≤ V oWS, ∀t ∈ T, b ∈ B, (23)

αe,t,i + αe,t,i + βRU
e,t,i − βRU

e,t+1,i + βRD
e,t,i − βRD

e,t+1,i

+λe,t,b(i) = cg
i , ∀t = 1 . . . nT − 1, i ∈ I, (24)

αe,nT ,i + αe,nT ,i + βRU
e,nT ,i + βRD

e,nT ,i

+λe,nT ,b(i) = cg
i , ∀i ∈ I, (25)

ϕch
e,t,b + ϕch

e,t,b
− εe,t,b ·∆τ − λe,t,b/ℵch = 0,

∀t ∈ T, b ∈ B, (26)

ϕdis
e,t,b + ϕdis

e,t,b
+ εe,t,b ·∆τ + λe,t,b · ℵdis = 0,

∀t ∈ T, b ∈ B, (27)

ϕeSoC
e,t,b + ϕeSoC

e,t,b
+ εe,t,b − εe,t+1,b = 0,

∀t = 1 . . . nT − 1, b ∈ B, (28)

ϕeSoC
e,nT ,b + ϕeSoC

e,nT ,b
+ εe,nT ,b = 0, ∀b ∈ B, (29)

−
∑

l|o(l)=b

ξe,t,l
xl

+
∑

l|r(l)=b

ξe,t,l
xl

= 0,∀b ∈ B, t ∈ T. (30)

B. Strong Duality Condition

For each LL problem and, thus, each representative day e,
the strong duality condition is enforced as follows:

OCPLL
e = OCDLL

e +
∑
t∈T

∑
i∈I

(
cstart
i · ye,t,i + cnlc

i · ve,t,i
)
. (31)

Note that the last term in the right-hand side of (31) offsets
the start-up and no-load costs optimized in the UL problem.

C. Nonlinear Single-Level Equivalent

As explained in [18], each LL problem can be replaced
by its primal feasibility constraints (11)–(20), its dual feasi-
bility constraints (22)–(30), and the strong duality condition
(31). Therefore, the BP (1)–(20) can be recast as a single-
level equivalent given by (1)–(9), and

{
(11)–(20), (22)–(31),

∀e ∈ E
}

. This equivalent is nonlinear because the following
nonlinearities appear in the problem: (i) products of con-
tinuous DLL (λe,t,b) and continuous PLL (dise,t,b, che,t,b)
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decision variables in the ES profit constraint (4), (ii) products
of continuous UL (eSoCmax

b , pmax
b ) and continuous DLL

(ϕeSoC
e,t,b, ϕ

ch
e,t,b, ϕ

dis
e,t,b) decision variables in (31), and (iii) prod-

ucts of binary UL (ve,t,i) and continuous DLL (αe,t,i, αe,t,i)
decision variables in (31). These three nonlinearities are
converted into equivalent mixed-integer linear expressions as
explained in Appendix A.

D. MILP Formulation

Using the linearized expressions from Appendix A, the
single-level MILP formulation is given as follows:

Eq. (1), (32)

subject to:

Eq. (2)− (3), (5)− (9), (11)− (20), (22)− (30), (33)

Eq. (A.11)− (A.13), (A.15)− (A.26). (34)

In (32)–(34), λe,t,b is modeled as a free variable, which can
attain arbitrarily high and low values. In practice, individual
market participants may use their market power to influence
LMPs and, thus, to maximize their own profit. Therefore, SOs
have adopted a set of market power mitigation policies that
aim to keep LMPs at a reasonable level to ensure competitive
market outcomes [30]. Based on the discussions in [31], [32],
the ability of ES to influence LMPs can be limited as (∀e ∈
E, t ∈ T, b ∈ B):

(1−∆λ) · λ̄e,t,b ≤ λe,t,b ≤ (1 + ∆λ) · λ̄e,t,b, (35)

where ∆λ is a non-negative parameter regulating the range of
deviations of the free variable λe,t,b from the reference values
λ̄e,t,b, which are taken as the LMPs in the case without ES.
Given constraint (35), parameter ∆λ can be interpreted as the
maximum deviation of the LMPs from the reference value
that ES can achieve by exercising market power. The case
study presented in Section IV analyzes the sensitivity of the
proposed approach to the value of parameter ∆λ.

E. Computational Complexity

The single-level equivalent presented in Section III-D is
an MILP problem and, therefore, is generally NP-hard. The
computational complexity of this problem is characterized by
the number of constraints and the number of continuous/binary
variables that can be calculated according to Table I. Note
that the total number of constraints depends on the initial
statuses of conventional generators due to constraints (7)–(9).
Hence, Table I provides an upper bound on the number of
such constraints.

TABLE I. DIMENSION OF THE SINGLE-LEVEL MILP PROBLEM

# of constraints 4 + nE + 3nB+
nEnT

(
17nI + 4nL + 17nB + 12nBnJ

)
# of continuous

1 + 2nB + nEnT

(
4nL + 7nI + 14nB + 3nBnJ

)
variables

# of binary
3nEnTnI + nBnJvariables

Fig. 2. A diagram of the ISO New England system described in [17].

TABLE II. ZONE NUMBERS FOR THE DIAGRAM IN FIGURE 2

Region ME NH VT WC Mass NE Mass CT RI SE Mass
Zone # 1 2 3 4 5 6 7 8

IV. CASE STUDY

A. Test System and Experimental Setup

The single-level MILP problem (32)–(35) was tested using
an 8-zone model of the ISO New England system [17]. This
test system covering six US states is illustrated in Fig. 2 and
includes 76 thermal generators with a total installed capacity
of roughly 30 GW. Each zone in this system is numbered in
Table II and is modeled as a separate bus in the proposed
BP. In addition to generation, load, and transmission data
given in [17], annual wind generation profiles with an hourly
resolution were taken from [33] for the 30% wind penetration
level in terms of annual electricity produced. Given this data
and no ES installed, the UC problem is solved for each day
of a given year. The resulting annual operating cost is 2544.5
M$. The mean hourly average LMPs at every zone and their
standard deviation throughout the year are displayed in Fig.
3. The standard deviation characterizes the range of the LMP
distribution over the course of the year and, therefore, gives
an indication of LMP variability in each zone.

The recursive hierarchical clustering algorithm described
in [34] is used to determine 5 representative days and their
respective weights from the year-long demand and wind
generation profiles. This algorithm is based on a general-
to-specific partitioning approach, which recursively combines
daily profiles at every bus in a given number of clusters
based on user-defined similarity or dissimilarity metrics. The
advantage of this algorithm is that it can simultaneously
account for intra-day and seasonal features of these profiles



7

1 2 3 4 5 6 7 8
0

200

Zone #

L
M

P
, 
$
/M

W
h

Annual LMP distribution for each zone

 

 

Mean Standard Deviation

Fig. 3. The mean and standard deviation of hourly LMPs throughout
the considered year in case without ES.
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Day 1

Day 2

Day 3

Day 4

Day 5

Fig. 4. The system-wide aggregated representative load (A), wind
generation (B), and net load (C) profiles. The net load profile is the
difference between the load and wind generation profiles.

and has high adaptivity that improves the local data quality.
However, other clustering techniques can be applied to obtain
representative days. We refer interested readers to [34]–[36]
for detailed literature surveys on such techniques. Fig. 4
displays the system-wide aggregated representative load and
wind generation profiles for the 5 representative days.

In the following simulations, the value of parameter ρ
is set to 6 h, which is a representative energy-to-power
ratio for promising ES technologies [1] and sufficient for
providing intra-day energy arbitrage [1], [2]. The charging
and discharging efficiency of ES are assumed symmetric with
ℵch = ℵdis = 0.9, which also falls within the range of
prospective ES technologies [1]. Each ES block is assumed to
be ∆eSoC = 10 MW and the maximum number of blocks in
each zone b (umax

b ) is set to 300. As in [2], the siting and sizing
decisions are analyzed for three capital cost scenarios: low
($20/kWh and $500/kW), medium ($50/kWh and $1000/kW)
and high ($75/kWh and $1300/kW). These investment costs
are prorated on a daily basis and the values of the cp and
ceSoC are obtained for each capital cost scenario assuming
that the ES lifetime is 10 years and the annual interest
rate is 5%, as explained in [2]. The investment budget is
ICmax = ∞, i.e., constraint (3) is thus nonbinding, unless
stipulated otherwise. Finally, to avoid overestimating the need
for ES due to prioritized dispatch of wind generation, the

V oWS is set to $0/MWh.
The dimension of the problem for this case study is

3,633,153 constraints, 947,057 continuous variables, and
29,760 binary variables. All simulations were carried out using
CPLEX under GAMS 23.7 [37] on an Intel Xenon 2.55 GHz
processor with 32 GB of RAM using the Hyak supercomputer
system at the University of Washington [38]. The optimality
gap was set to 0.1%. All simulations of the proposed BP with
different input parameters presented below were completed
within 72 hours.

B. Siting and Sizing Decisions

1) Impact of the ES profit constraint (4): Fig. 5 displays the
optimized siting and sizing decisions2 on ES for the low capital
cost scenario for different values of χ and ∆λ. Regardless of
∆λ chosen, the ES profit constraint (4) affects both the siting
and sizing decisions.

If ∆λ = 0, i.e., LMPs are not affected by ES installa-
tions (λe,t,b = λ̄e,t,b), siting decisions between the profit-
unconstrained (χ = 0) and profit-constrained cases (χ = 1)
overlap only in zone 8, which is characterized by the largest
variability in LMPs (Fig. 3). However, as ∆λ increases, i.e.,
ES deployment influences LMPs as compared to the case
without ES, the number of shared locations between the profit-
constrained and unconstrained cases increases. For instance, if
∆λ = 0.1, ES are placed in zones 4 and 8 in both cases. If
∆λ is further increased to 0.2, ES are installed in zones 1, 5
and 8 for both cases.

Regarding the sizing decisions, the profit-unconstrained
case consistently results in larger total energy ratings
(
∑

b∈B eSoC
max
b ) for any value of ∆λ, which also leads to

higher investment costs, as illustrated in Fig. 6A. Fig. 6B
shows that these decisions do not result in sufficient ES
profits to recover such high investment costs, thus leading
to net monetary losses, i.e., ∆ < 0 (Fig. 6C). Therefore,
the profit-unconstrained case overestimates the whole-system
need for ES and produces economically nonviable decisions.
This conclusion can also be related to the whole-system value
of energy storage. As shown in [13], the value of energy
storage monotonically reduces as the installed energy storage
capacity increases. Thus, larger total energy ratings in the
profit-unconstrained cases reduce the whole-system value of
storage such that ES owners cannot collect sufficient profits
to recover their investment cost.

On the other hand, the profit-constrained decisions have
lower total energy ratings and investment costs, resulting
in net monetary gain, i.e., ∆ > 0 (Fig. 6C). This gain
ensures the profitability of ES and economic sustainability of
these siting and sizing decisions. This difference between the
profit-constrained and unconstrained cases can be attributed to
different scheduling priorities. In the profit-unconstrained case,
ES are installed and scheduled to minimize the operating cost,
so ES are allowed to incur losses if they reduce the operating
cost. However, in the profit-constrained case, ES are installed

2Recall that the energy and power ratings of ES are assumed to be
proportional (A.12). Therefore, the analyses in Section IV-B discuss the sizing
decisions in terms of the energy ratings (eSOCmax

b ).
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Fig. 6. Effect of the ES profit constraint (4) under the low capital
cost scenario on: A) Investment cost of ES (IC), B) expected profit
of ES (P ), C) net monetary gain/loss of ES (∆ = P − IC).

and scheduled to minimize the system-wide operating cost as
long as the investment cost can be fully recovered.

The common thread of the siting decisions in the profit-
constrained and unconstrained cases is that ES are usually
placed in zones with relatively high variability in LMPs as
Fig. 3 shows. This observation is consistent with the empirical
siting rule in [39] suggesting that the most likely profit oppor-
tunities for ES in a market environment are at buses with the
greatest difference between discharging and charging LMPs.
Although the variability in LMPs drives the siting decisions, its
impact on sizing decisions in the profit-constrained case is not
straightforward. For example, Fig. 3 shows that the standard
deviation of LMPs is larger in zone 8 than in zone 1, but the
ES capacity placed in zone 1 is bigger than in zone 8 for
∆λ = 0. Similar observations can be made for zones 4, 5,
and 8 in cases with ∆λ = 0.1 and ∆λ = 0.2.

Figures 6B and 6C show that the regulating parameter
∆λ has a strong correlation with both the ES profit and the
recovery of the investment cost, and its effect depends on

parameter χ. In the profit-constrained case (χ = 1), increasing
∆λ allows more intra-day variations in LMPs and, thus, the
ES profit (Fig. 6B) and the net monetary gain (Fig. 6C)
monotonically increases. However, increasing ∆λ would only
lead to larger monetary losses in the profit-unconstrained case,
i.e., χ = 0 (Fig. 6C).

Since the profit-unconstrained decisions cannot be econom-
ically justified, the rest of this paper assumes that χ = 1 and
examines the profit-constrained case.

2) Effect of the budget constraint (3): Fig. 7A illustrates
the effect of a finite investment budget on the optimized siting
and sizing decisions. For tight investment budgets (ICmax ≤
$45000), constraint (3) is binding and there is no diversity
in ES allocation and energy ratings for different values of
∆λ. ES are systematically placed in zone 8 (highest LMP
variability, see Fig. 3) for any value of ∆λ. However, as
the investment budget increases (ICmax ≥ $60000), Fig. 7A
shows that ES are allocated to other zones, resulting in larger
total energy ratings. The relationship between the investment
cost and the maximum investment budget is shown in Fig. 7B,
which distinguishes the cases when the siting and sizing
decisions are driven by either the investment budget or the ES
profit constraints. When budget constraint (3) is nonbinding,
the decisions are driven by the binding profit constraint (4).
The large-scale ES deployment needed to accommodate a
high penetration of renewable generation [8] requires large
investments and would be driven by the profit constraint, thus
showing the importance of the proposed planning method.

3) Effect of the operating policy: Profit constraint (4) sums
the profits collected by ES in all zones, i.e., it assumes
that ES in different zones are operated by the same entity
in a coordinated manner [15]. In practice ES located in
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Fig. 7. Effect of the budget constraint (3) under the low capital cost
scenario on: A) The optimized ES siting and sizing decisions, B) the
relationship between the investment cost and the investment budget.
Black circles and squares indicate respectively the cases where the
optimization is driven by the binding investment constraint (3) and
the ES profit constraint (4).
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different zones could be operated by independent entities. The
independent operating policy can be modeled by replacing (4)
with nodal ES profit constraints of the following form:∑

e∈E
ωe ·

∑
t∈T

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch)

≥ χ · IC, ∀b ∈ B. (36)

Fig. 8A illustrates the difference between ES siting and
sizing decisions with the coordinated and independent op-
erating policies. As compared to the independent policy, the
coordinated policy consistently results in lower total ES ratings
and, thus, it requires lower investments (Fig. 8B). On the
other hand, despite the lower total ES ratings, the coordinated
policy results in higher profits than the independent policy for
∆λ > 0. Hence, an ES block installed under the coordinated
policy is utilized more efficiently than under the independent
policy when ES deployment influences the LMPs as compared
to the case without ES.

4) Impact of the capital cost: If the capital cost increases,
the ES are allocated at fewer zones and their total energy rating
decreases, as shown in Fig. 9 for the coordinated operating
policy. Under the high capital cost scenario, ES are only placed
at zone 8. Furthermore, there is a relatively small difference
between the energy ratings for different values of ∆λ. This
observation suggests that as long as the capital cost of ES
remains prohibitively expensive, the ability of ES to influence
LMPs is insignificant due to their relatively low penetration.
However, provided the anticipated ES capital cost reduction,
accounting for impacts of ES on LMPs would be of greater
value.

C. Evaluation of Costs and Profits

To assess the performance of the system with the various
siting and sizing decisions made as explained above, the UC
problem is solved for each day of a given year. This assessment
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Fig. 9. Effect of the capital cost on the profit-constrained ES siting
and sizing decisions under the coordinated policy.

TABLE III. ANNUAL ASSESSMENT OF THE ES SITING AND SIZING
DECISIONS FOR DIFFERENT OPERATING POLICIES AND VALUES OF ∆λ

Metric Operating ∆λ
policy 0 0.1 0.2

OC
SO , M$

Coordinated 2,439.7 2,449.8 2,455.0
Independent 2,439.9 2,457.8 2,461.3

CS
SO , M$

Coordinated 104.8 94.6 89.2
Independent 104.6 86.7 83.2

P
ES , M$

Coordinated 267.6 275.8 286.5
Independent 234.1 239.1 247.2

WS, MWh
Coordinated 51.5 52.1 52.7
Independent 98.7 96.4 96.1

TABLE IV. ANNUAL ASSESSMENT OF THE ES SITING AND SIZING
DECISIONS FOR DIFFERENT CAPITAL COSTS AND VALUES OF ∆λ

Metric Capital cost ∆λ
0 0.1 0.2

OC
SO , M$

Low 2,439.7 2,449.8 2,455.0
Medium 2,480.4 2,486.4 2,488.9

High 2,491.3 2,495.4 2,495.8

CS
SO , M$

Low 104.8 94.6 89.2
Medium 64.1 58.1 55.6

High 53.2 49.1 48.7

P
ES , M$

Low 267.6 275.8 286.5
Medium 216.7 241.2 247.4

High 209.3 216.2 216.2

WS, MWh
Low 51.5 52.1 52.7

Medium 64.7 70.5 79.2
High 87.4 101.4 101.4

is based on the following metrics: Average daily operating cost
for the SO (OC

SO
), average daily cost savings for the SO

(CS
SO

) relative to the case without ES, average daily profit
for the ES (P

ES
), and average daily wind spillage (WS).

Table III presents the evaluation of the profit-constrained
ES siting and sizing decisions made without budget limits and
for the low capital cost scenario. It shows that the coordinated
operating policy of ES leads to lower annual operating costs
and larger annual cost savings for the SO than the independent
operating policy. Similarly, the coordinated operating policy
results in larger ES profits. Both the ES and SO metrics are
sensitive to the value of ∆λ. As ∆λ increases, which translates
into larger influence of ES on LMPs, the annual profit of the
ES increases. This increase in ES profits comes at the expense
of an increase in the annual operating cost and, thus, reduces
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the annual cost savings for the SO. The coordinated operating
policy reduces the annual wind spillage by a factor of two
as compared to the independent operating policy. Notably,
parameter ∆λ marginally affects the annual wind spillage for
a given policy.

Table IV presents the evaluation of the profit-constrained
ES siting and sizing decisions made without budget limits
with the coordinated operating policy under different capital
cost scenarios. As in Table III, all metrics are sensitive to
∆λ. However, this sensitivity varies with the capital cost.
As the capital cost increases, the difference in cost savings
between cases with ∆λ = 0 and ∆λ = 0.2 reduces.
Similarly, the difference in ES profits between those cases
non-monotonically decreases. Thus, the ES ability to influence
LMPs would chiefly affect the ES profit and SO savings when
the ES capital cost is lower. If the capital cost is relatively
high, the influence of ES on LMPs would have a moderate
impact on these metrics. Also, as the capital cost decreases,
more ES capacity is installed, which leads to lower annual
wind spillage.

V. CONCLUSION

This paper presents a bilevel program for optimally siting
and sizing ES that accounts for the perspectives of both the
SO and the owners of ES devices. The results indicate that
the optimal ES siting and sizing decisions are sensitive to the
minimum profit constraint. This constraint represents a linear
relationship between the short-term operational profit and
long-term investment cost of merchant ES. If the profitability
requirement is not accounted for, i.e. parameter χ is set to
0, ES owners would not be able to recover their investment
costs, leading to economically nonviable siting and sizing
decisions. The case study also reveals the sensitivity of the
profit-constrained siting and sizing decisions to:
• Operating policy: Enabling coordinated ES operations at

different buses increases ES profits and SO cost savings,
as well as reduces wind spillage;

• Ability to influence LMPs: Merchant ES can extract
additional profits by influencing LMPs, which comes at
the expense of a larger system-wide operating cost;

• Capital cost: As the capital cost of ES remains pro-
hibitively expensive, ES cannot take advantage of the
coordinated operating strategy and influencing LMPs.

The work in this manuscript points to several areas for
potential future work:
• Improving computational tractability of the proposed

mathematical framework with decomposition solution
techniques to achieve scalability for larger transmission
networks.

• Incorporating other potential profit streams, such as re-
serve provision and capacity market payments.

• The investment model merits further theoretical research
to accommodate multiple decision-making stages, i.e., a
so-called dynamic approach.

• The proposed approach can be used for deriving ad-hoc
siting and sizing rules to provide “warm start” solutions
for more complex and computationally challenging siting
and sizing models.
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APPENDIX A
LINEARIZATION OF THE NONLINEAR SINGLE-LEVEL

EQUIVALENT

1) Linearization of the ES profit constraint (4): The ES
profit in (4) can be equivalently expressed in terms of other
dual variables in order to linearize it using the complementary
slackness conditions of each LL problem. First, using (III-A2)
and (27), the ES profit in (4) for each representative day e
results in:∑

t∈T

∑
b∈B

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch) =∑

t∈T

∑
b∈B

[
εe,t,b ·∆τ · (che,t,b − dise,t,b)−

dise,t,b ·
(
ϕdis
e,t,b

+ ϕdis
e,t,b

)
− che,t,b ·

(
ϕch
e,t,b

+ ϕch
e,t,b

)]
. (A.1)

Expressing ∆τ ·(che,t,b−dise,t,b) in terms of eSoCe,t,b from
(15), the first term in the right-hand side of (A.1), hereinafter
denoted as Ke, can be expressed as:

Ke =
∑
t∈T

∑
b∈B

εe,t,b · (eSoCe,t,b − eSoCe,t−1,b). (A.2)

The terms in the right-hand side of (A.2) can be rearranged
as:

Ke =

nT−1∑
t=1

∑
b∈B

eSoCe,t,b ·
(
εe,t,b − εe,t+1,b

)
+
∑
b∈B

eSoCe,nT ,b · εe,nT ,b. (A.3)

Equation (A.3) can be equivalently expressed in terms of
ϕeSoC
e,t,b and ϕeSoC

e,t,b
from (28) and (29) as:

Ke =
∑
t∈T

∑
b∈B

eSoCe,t,b ·
(
− ϕeSoC

e,t,b
− ϕeSoC

e,t,b

)
. (A.4)

The first term in the right-hand side of (A.1) can be replaced
with (A.4), thus equivalently reformulating (A.1) as follows:∑

t∈T

∑
b∈B

λe,t,b · (dise,t,b · ℵdis − che,t,b/ℵch) =

−
∑
t∈T

∑
b∈B

[
eSoCe,t,b · (ϕeSoC

e,t,b
+ ϕeSoC

e,t,b)+

dise,t,b · (ϕdis
e,t,b

+ ϕdis
e,t,b) + che,t,b · (ϕch

e,t,b
+ ϕch

e,t,b)
]
. (A.5)

The following equalities can be derived using the comple-
mentary slackness conditions associated with constraints (16)–
(18), ∀t ∈ T, b ∈ B:
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dise,t,b · ϕdis
e,t,b = pmax

b · ϕdis
e,t,b, (A.6)

che,t,b · ϕch
e,t,b = pmax

b · ϕch
e,t,b, (A.7)

eSoCe,t,b · ϕeSoC
e,t,b = eSoCmax

b · ϕeSoC
e,t,b, (A.8)

che,t,b · ϕch
e,t,b

= dise,t,b · ϕdis
e,t,b

= eSoCe,t,b · ϕeSoC
e,t,b

= 0.

(A.9)

After using the equalities (A.6)–(A.9) for the nonlinear
terms in (A.5), the ES profits are equivalently rewritten as
a nonlinear function depending on the ES power and energy
ratings:∑

t∈T

∑
b∈B

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch) =

−
∑
t∈T

∑
b∈B

[
eSoCmax

b · ϕeSoC
e,t,b + pmax

b ·
(
ϕch
e,t,b + ϕdis

e,t,b

) ]
.

(A.10)

To equivalently reformulate (A.10) as a linear expression,
ES ratings are modeled as:

eSoCmax
b =

∑
j∈J

∆eSOC · ub,j ,∀b ∈ B (A.11)

pmax
b = eSoCmax

b · ρ−1 =
∑
j∈J

∆eSOC · ρ−1 · ub,j ,∀b ∈ B

(A.12)∑
j∈J

ub,j ≤ umax
b ,∀b ∈ B. (A.13)

In (A.11) and (A.12), we assume that at every bus ES
is assembled from standard blocks that have fixed energy
(∆eSOC) and power (∆eSOC · ρ−1) ratings. For instance,
the ratio between these energy and power ratings is assumed
constant [2] and the coefficient ρ depends on the storage
technology [12]. Constraint (A.13) limits the number of blocks
that can be installed at each bus. Using (A.11) and (A.12), the
ES profits (A.10) can be equivalently reformulated as:∑

t∈T

∑
b∈B

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch

)
=

−
∑
t∈T

∑
b∈B

∑
j∈J

∆eSoC · ub,j ·
(
ϕeSoC
e,t,b + ρ−1 ·

(
ϕch
e,t,b + ϕdis

e,t,b

))
.

(A.14)

Expression (A.14) still contains three products of binary
and continuous variables that are linearized using the ‘big
M’ method [29]. This linearization comes at the expense
of auxiliary continuous variables (a1

e,t,b,j and a2,ch/dis
e,t,b,j ) and

constraints (A.16)–(A.21). Constraint (4) is replaced with the
following equivalent:

−
∑
e∈E

ωe

∑
t∈T

∑
b∈B

∑
j∈J

(
a1
e,t,b,j + a2,ch

e,t,b,j + a2,dis
e,t,b,j

)
≥ χ · IC,

(A.15)

and the linear constraints (∀e ∈ E, t ∈ T, b ∈ B, j ∈ J):

−M · (1− ub,j) ≤ ϕeSoC
e,t,b ·∆eSoC − a1

e,t,b,j ≤ 0, (A.16)

−M · (1− ub,j) ≤ ϕch
e,t,b · ρ−1 ·∆eSoC − a2,ch

e,t,b,j ≤ 0,

(A.17)

−M · (1− ub,j) ≤ ϕdis
e,t,b · ρ−1 ·∆eSoC − a2,dis

e,t,b,j ≤ 0,

(A.18)

−M · ub,j ≤ a1
e,t,b,j ≤ 0, (A.19)

−M · ub,j ≤ a2,ch
e,t,b,j ≤ 0, (A.20)

−M · ub,j ≤ a2,dis
e,t,b,j ≤ 0. (A.21)

Since the linearization process presented in this subsection
is based on algebraic manipulations, complementary slackness
conditions, and the ‘big M’ method, the left-hand side in
(A.15) is an exact equivalent of the left-hand side in (4).
Therefore, this linearization does not affect the accuracy of
the solution.

2) Linearization of the strong duality equality (31): As
shown in (21), the term OCDLL

e in (31) contains several
nonlinear terms. The second and third terms in (21) are
identical to the right-hand side of (A.10) and, thus, the same
linearization technique can be applied. The fifth term in (21)
involving the products ve,t,i ·αe,t,i ·Gi and ve,t,i ·αe,t,i ·Gi can
also be linearized using the ‘big M’ method [29]. Therefore,
constraint (31) is replaced for each representative day e with:

OCPLL
e =

∑
t∈T

∑
b∈B

[
γe,t,b · wf

e,t,b + λe,t,b ·
(
de,t,b − wf

e,t,b

)
+∑

j∈J

(
a1
e,t,b,j + a2,ch

e,t,b,j + a2,dis
e,t,b,j

) ]
+
∑
t∈T

∑
i∈I

[
he,t,i + he,t,i

+βRU
e,t,i ·RUi − βRD

e,t,i ·RDi + cstart
i · ye,t,i + cnlc

i · ve,t,i
]
+∑

i∈I

(
βRU
e,1,i + βRD

e,1,i

)
·G0

e,i +
∑
t∈T

∑
l∈L

(
δe,t,l − δe,t,l

)
· F l,

(A.22)

−M · (1− ve,t,i) ≤ αe,t,i ·Gi − he,t,i ≤ 0,∀t ∈ T, i ∈ I,
(A.23)

0 ≤ αe,t,i ·Gi − he,t,i ≤M · (1− ve,t,i) ,∀t ∈ T, i ∈ I,
(A.24)

−M · ve,t,i ≤ he,t,i ≤ 0,∀t ∈ T, i ∈ I, (A.25)
0 ≤ he,t,i ≤M · ve,t,i,∀t ∈ T, i ∈ I. (A.26)

The proposed linearization scheme relies on the ‘big M’
method and, thus, requires setting bounds on LL dual vari-
ables, which are known as the ‘big M’ values. The computa-
tional performance of the BP can be affected by the selections
of the ‘big M’ values, especially when implemented for large-
scale systems. This drawback could be overcome either by
appropriately selecting the big-M values or avoiding the use
of the ‘big M’ method [40], [41].
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